AI i cyberbezpieczeństwo: w poszukiwaniu konkretów

Przeczytasz w 3 min

Bez algorytmów dzisiejsze cyberbezpieczeństwo byłoby słabsze, ale łatwo przeoczyć ich prawdziwą wartość, wyolbrzymiając zarazem stawiane cele i nadzieje związane z algorytmami Artificial Intelligence/Machine Learning w obszarze bezpieczeństwa IT.

Wszystkie narzędzia stosowane w cyberbezpieczeństwie dostarczają tysiące alertów o niezbalansowanych priorytetach i niestety również sporą ilość fałszywych alarmów. Programista, otrzymawszy taki backlog, bardzo szybko przestałby przejmować się bezpieczeństwem. Jednak jest to idealny przypadek do zastosowania kontrolowanego uczenia maszynowego, z którym – po pewnym czasie rekurencyjnego dostarczania wzorcowych danych – całość zbioru można przefiltrować z 99-proc. precyzją oraz dokładnością, w dodatku uwzględniając kontekst aplikacji i stojące za nim ryzyka.

Kilka czynników wpływa na to, że Machine Learning jest coraz częściej stosowane w cyberbezpieczeństwie. Wzrasta dostępność chmury obliczeniowej. Elastyczne i łatwo skalowalne zasoby są więc dostępne za coraz mniejsze pieniądze. Z drugiej strony internetowe repozytoria są pełne narzędzi open source, z których można korzystać, rozwijać je, integrować. Nałożenie się tych dwóch okoliczności daje szansę matematyce i statystyce wszędzie tam, gdzie mówimy o przetwarzaniu ogromnej ilości danych.

Spotkałem wiele pomysłów i przykładów zastosowań Machine Learningu w cyberbezpieczeństwie – rozpoczynając od prewencji, przez detekcję, a kończąc na automatyzacji procesów reakcji lub testowania. Gdy jednak zażądamy konkretów i rozgonimy opary marketingu, często na placu boju nie zostaje zbyt dużo. Przytoczę natomiast dwa przypadki, które z powodzeniem zastosowaliśmy w naszej firmie.

AI na odsiecz DevSecOps

Pierwszy związany jest z automatycznymi procesami tworzenia i dostarczania aplikacji. Jak sama nazwa – i stojąca za nią idea – mówi, bezpieczeństwo należy dostarczyć również automatycznie. Jest to spore wyzwanie, bowiem zadaniem jest uchronienie programistów przed popełnieniem kardynalnych błędów, zachowując równocześnie ich samodzielność i swobodę. Na odsiecz przybywają rozliczne narzędzia do wykonywania automatycznych testów aplikacji, infrastruktury, kontroli poprawności konfiguracji, sprawdzania podatności wykorzystanych bibliotek itd.

Wszystkie te narzędzia dostarczają tysiące alertów o niezbalansowanych priorytetach i niestety również sporą ilość fałszywych alarmów. Programista, otrzymawszy taki backlog, bardzo szybko przestałby przejmować się bezpieczeństwem. Jednak jest to idealny przypadek do zastosowania kontrolowanego uczenia maszynowego, z którym – po pewnym czasie rekurencyjnego dostarczania wzorcowych danych – całość zbioru można przefiltrować z 99-proc. precyzją oraz dokładnością, w dodatku uwzględniając kontekst aplikacji i stojące za nim ryzyka.

Tylko AI rozpozna ulotną woń phishingu

Drugi z przykładów związany jest z naszą CyberTarczą, a konkretnie wykrywaniem domen służących przestępcom do tworzenia stron phishingowych. Z ich pomocą wyłudzane są dane ofiar, uwierzytelnienia do serwisów, w tym bankowych, autoryzacyjne kody, dane kart kredytowych itd. Im wcześniej zamiary przestępców zostaną wykryte, tym lepiej. W trakcie ataku jest już dla wielu ofiar zdecydowanie za późno.

Wszystkie dostępne tutaj źródła danych generują miliony zdarzeń dziennie. Wykrycie tych kilkudziesięciu, które będą wykorzystane w atakach na polskich internautów, jest nie lada wyzwaniem, zwłaszcza przy bardzo skąpej liczbie dostępnych, oprócz nazwy domeny, dodatkowych atrybutów. W zasadzie to przykład problemu, który rozwiązać można efektywnie tylko z pomocą matematyki i jeżeli w początkowej fazie nie da się idealnie wyfiltrować wyników, nie generując przy tym strat, to na pewno można zrobić porządną prefiltrację, przygotowując półfabrykaty do dalszego procesu.

Inteligentnie stosujmy sztuczną inteligencję

Zastosowanie Machine Learning – jak wszystko w cyberbezpieczeństwie – „zależy” i jest mocno uwarunkowane. Z pewnością obszar zastosowania musi być dokładnie zdefiniowany i trzeba być pewnym, że odpowiedni wzór uczący będzie dostępny. Uzyskamy wówczas szybszą i tańszą alternatywę lub chociaż bardzo wartościowy dodatek do innych metod. Jeżeli tych warunków nie spełnimy, to nasz projekt będzie bardzo inteligentnie i bez miłosierdzia pożerał nasze pieniądze i inne zasoby.

Zupełnie osobnym i ciekawym tematem są ataki na tzw. sztuczną inteligencję, gdzie manipulując zbiorem przetwarzanych danych, można osiągnąć nieoczekiwany wpływ na rezultaty funkcji, które go przetwarzają. To fascynujący temat na osobną rozmowę.

Przemysław Dęba, dyrektor cyberbezpieczeństwa w Orange Polska

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany.

Przeczytaj też:

Przeczytasz w 14 min

Cyfrowy pociąg do Hollywood cz. II

Kierunek strategiczny jest ważny, ale to wykonanie określa prawdziwych liderów. Bezbłędne wykonanie wymaga, aby firma zbudowała consensus wokół wyników biznesowych, które stanowią żądany rezultat określonego miksu strategii i skupiła zasoby oraz uwagę na możliwościach, które są istotne dla osiągnięcia tych wyników. Transformacja cyfrowa wymaga prawdziwego upodmiotowienia ludzi na linii fontu, analogicznie do roli właściciela produktu w metodologiach agile.

Artykuł dostępny tylko dla zarejestrowanych użytkowników.
Zaloguj się Dołącz do nas
Przeczytasz w 5 min

Jak będzie wyglądać fabryka przyszłości?

Nadeszła złota era inteligentnych technologii robotyzacji i automatyzacji opartych na różnych typach zaawansowanych algorytmów, wspieranych w dużej mierze przez sztuczną inteligencję - Artificial Intelligence. Jest to trend niezwykle istotny dla przemysłu. Złożoność systemów automatyki i zakładów przemysłowych wzrasta bowiem wraz z elastycznością - czy też swego rodzaju konfiguralnością - produkcji i wielkością fabryk. Co za tym idzie nieprzerwanie rosną wymagania względem dostępności danych dotyczących produkcji, przy jednoczesnym ograniczeniu liczby osób zajmujących się ich analizą. I co najważniejsze, przechowywanie i transfer danych muszą być niezawodne, bezpieczne i wydajne.

Artykuł dostępny tylko dla zarejestrowanych użytkowników.
Zaloguj się Dołącz do nas
Przeczytasz w 7 min

KGHM: IT stało się kluczowym graczem utrzymującym w działaniu system nerwowy firmy

Z Ireneuszem Jazownikiem, dyrektorem naczelnym Centralnego Ośrodka Przetwarzania Informacji w KGHM Polska Miedź rozmawiamy o tym, jak na stan epidemii w Polsce reaguje sektor przemysłowy, czy można było się przygotować na taką sytuację, jakie nowe projekty zrealizowano w odpowiedzi na obecny kryzys, z jakimi, największymi problemami musiała poradzić sobie KGHM Polska Miedź, w jaki sposób tego dokonano i jak IT postrzega dziś biznes.

Artykuł dostępny tylko dla zarejestrowanych użytkowników.
Zaloguj się Dołącz do nas

Dziś tam gdzie jest cyfrowe terra incognita są członkowie CXOHUB, którzy są pionierami cyfryzacji, transformacji do nowej gospodarki (new normal).

Zapraszam do udziału,
Szymon Augustyniak

Misja, wizja i wartości CXO HUB

  • CXO HUB powstało, aby zgromadzić najlepszych menedżerów i ekspertów w zakresie szeroko pojętej cyfrowej zmiany.
  • Misją społeczności CXO HUB jest promowanie wiedzy oraz sylwetek jej członków na arenie polskiej oraz międzynarodowej.
  • Społeczność CXO HUB stanie się widoczną, słyszalną siłą w dyskursie o przyszłości i standardach w zakresie zastosowań nowych technologii.

Zdobywaj kontakty, buduj relacje

CXO HUB:

  • wspiera budowę wizerunku merytorycznej i doświadczonej firmy
  • zapewnia oryginalne, inteligentne formaty budowania relacji
  • tworzy zaangażowaną i aktywną społeczność
  • buduje i dystrybuuje unikalny content dla publiczności
  • zapewnia przestrzeń do budowy kontaktu, relacji i wpływu

Dołącz do nas!

Formuła CXO HUB jest etyczna w wymiarze moralnym, obiektywna w wymiarze poznawczym oraz neutralna w wymiarze relacji z rynkiem. Dołącz do społeczności

 

Dla kogo jest CXO HUB:

  • CIO polskich przedsiębiorstw
  • szefowie IT
  • liderzy największych firm w Polsce
  • decydenci zakupu rozwiązań informatycznych